New technology for protein and peptide detection and quantification in gels, cells and blots.

By Peter Karuso (CSO) Fluorotechnics

Fluorotechnics’ products **LavaPurple** Total Protein Stain, **LavaCell** live cell imaging stain, **LavaPep**, peptide quantification kit, and **FluroProfile** are all based on epicocconone (1), a naturally occurring biodegradable fluorescent compound extracted from a the fungus *Epicoccum nigrum*¹. Epicocconone is a low molecular weight (410 amu), water soluble, fluorophore that spontaneously covalently binds to primary amines (such as lysine residues in proteins) to yield an intensely red-fluorescent product (figure 1). The mechanism by which the weakly green fluorescent epicocconone is converted to the highly fluorescent enamine (2) has recently been elucidated and involves the attack of nucleophilic amines². This unique mechanism (figure 2) provides sensitive quantification of proteins across a wide variety of platforms (e.g. in solution, gels, blots, and cells) and led directly to a number of commercial products that are becoming increasingly popular³-⁶.

Figure 1. Representative fluorescence of epicocconone (left) in acetonitrile and in the presence of an amine (right).

Figure 2. Spontaneous reaction of epicocconone (1) with proteins yields a fluorescent complex (2) that is readily converted back to epicocconone under neutral conditions. While the adduct 2 is quite fluorescent, a substantial increase is associated with protonation of the β-diketone side-chain (3).

Fluorescence is also pH dependant, reaching a maximum at around pH 2, which is also corresponds to the optimal stability of the epicocconone-protein complex. Thus compound 3 (Figure 2) is about 3x as fluorescent as compound 2 (Figure 3). This is the reason we store gels and blots under acidic conditions. The stability of the adduct is also quite pH dependant (Figure 4)². By MALDI mass spectrometry, we
have been able to determine the rate of hydrolysis of an epicocconone-peptide adduct and shown that the mechanism is base-catalysed. This has allowed us to develop the unique advantages of epicocconone in proteomics and biotechnology. That is a molecule that on covalently derivatising a protein or peptide changes spectral characteristics, allowing sensitive quantification against a non-fluorescent background but also a pH dependant removal of the fluorophore that leave the proteins or peptides free for further down-stream processing. The fluorophore can be tracelessly removed by washing a neutral pH.

This pH dependent, reversible binding means LavaPurple shows improved MS-compatibility for low abundance protein spots than other fluorescent stains.

During staining with LavaPurple the gels with are basified to approximately pH 10 in order to deprotonate lysine residues. Deprotonation enables the amines to react with the masked aldehyde of epicocconone to produce a stable but highly fluorescent enamine (Figure 2, 2) allowing ultra sensitive detections of proteins (down to picograms) in gels. By lowering the pH to approximately 2.5 after staining, by immersing the gels or blot in 1% citric or 7% acetic acid, epicocconone becomes permanently conjugated to the primary amines and the fluorescent signal is retained for up to 12-months. Raising the pH during tryptic digestion (typically pH 8.5) or Edman degradation results in instability of the protein-fluorophore conjugate and release of unmodified protein or in the case of tryptic digestion unmodified peptides.

In the presence of proteins epicocconone does not need to be maintained at a low pH in order to be fluorescent (Figure 3). This is because an equilibrium is established between conjugated and free epicocconone (Figure 2) such that there is always a high concentration of the fluorescent conjugated form. Thus LavaCell is typically used to stain cell around neutral pH whilst FluoroProfile and LavaPep operate under mildly alkaline conditions. Fluorescence from the unconjugated form is weak (520 nm) and easily removed with filters.

Epicocconone is excitable by common light sources enabling analysis by standard fluorescence scanners, fluorescence plate readers and CCD camera systems. Another advantage of the spectral characteristics shown in Figure 4 is the large Stokes’ shift of epicocconone when bound to proteins (up to 200 nm), which enables
simple multiplexing with a wide range of shorter Stokes’ shift fluorophores (CyDyes, SYTOX, Hoechst 33342, fluorescein, DAPI, etc) using a single light source. The spectral compatibility of LavaPurple with CyDye DIGE Fluors (Cy2, Cy3, Cy5) allows full integration in the Ettan DIGE workflow.

![Fluorescence spectral characteristics of epicocconone](image)

Figure 4. Fluorescence spectral characteristics of epicocconone in water (green) and in the presence of Bovine Serum Albumin (BSA). Vertical lines represent common lasers used to excite the epicocconone-protein adduct (405 nm diode laser, 488 Ar ion laser and 532 frequency double Ng-YAG laser).

References